

Open Source Matlab Code for a Vector

Tracking-based GPS Software-Defined

Receiver

User Manual

Written by Bing Xu

The Hong Kong Polytechnic University

Hong Kong, China

January 2019

Contents
Introduction ... 1

Requirements .. 1

Installation... 1

Supported Front-ends .. 2

Processing Modes ... 2

Main Functionalities ... 2

Initiali zation .. 3

Acquisition ... 3

Conventional Tracking .. 3

Vector Tracking ... 4

Usage... 5

Initialization parameters ... 6

Acquisition results ... 8

Tracking results ... 9

Positioning results ... 11

Contact Information .. 13

1

Introduction

Due to its increased immunity to receiver dynamics, interference and jamming, as well as its

ability to bridge short signal outages, vector tracking has received increased attention in the GNSS

community in recent years. This software implements the vector delay lock loop (VDLL)

algorithm on a software-defined receiver (SDR), and aims at providing users with a tool to

investigate the pros and cons of vector tracking in various applications and under various

environments. This software is called GPSSDR_vt hereinafter for convenience.

In GPSSDR_vt, an ñequivalentò conventional tracking SDR based on an extended Kalman

filter (EKF) is implemented, which shares the same state, system and measurement models and

noise tuning methods with that used by vector tracking. This baseline provides users with a tool to

compare the performance of vector tracking and conventional tracking on common ground.

GPSSDR_vt is developed in MATLAB, an easy-to-use programming language, so that users can

focus more on testing newly developed algorithms related to vector tracking based on this platform.

Requirements

GPSSDR_vt is currently developed and tested in MATLAB environments on Windows

platforms. It can also work on a Linux operating system. It does not use any MATLAB toolboxes,

but the MATLAB version is required to be greater than 7.6.

Installation

Make sure you have a working MATLAB environment. To install GPSSDR_vt simply unzip

the file into a folder, e.g., ./GPSSDR_vt /. There are two folders and one user manual in the package.

The sample data set is in the folder called sample data. The data file is compressed due to its large

size. Before using the sample data set, please unzip the data file. The MATLAB source code is in

the folder called source code. Open the MATLAB application and set the current folder

as ./GPSSDR_vt/source code/. Then run the main program, SDR_main.m.

2

Supported Front-ends

GPSSDR_vt supports various front-ends, e.g., IP-Solutions, bladeRF X40, NSL Stereo, etc.

Users need to make appropriate configurations for the front-end used, in the script

initParameters.m.

Processing Modes

GPSSDR_vt is currently only working in the post-processing mode. Raw IF data should be

first collected by an RF front-end, then processed using this software.

Main Functionalities

The flowchart of GPSSDR_vt is given in Figure 1, together with the name of the script for

each functionality. Main functionalities include initialization, acquisition, conventional tracking

and vector tracking, which are described in detail as follows.

Figure 1. Software flowchart.

3

Initialization
The first step to use this software is to complete configurations such as the sampling rate and

intermediate frequency of the raw signal, the frequency step and band to be searched in the

acquisition process, etc.

Acquisition
The second module is signal acquisition, which determines code phase and Doppler frequency

of visible satellites. A two-step coarse-to-fine acquisition method is used in this software. In the

first step, the 4-ms data is used to detect the code phase and Doppler frequency coarsely via the

parallel code phase search acquisition algorithm, as shown in Figure 2. The second step utilizes

the long C/A code-stripped data to find the carrier frequency accurately via the fast Fourier

transform.

Figure 2. Block diagram of the parallel code phase search algorithm (Van Nee and Coenen, 1991).

Conventional Tracking
After obtaining the code phase and Doppler frequency, these two parameters should be

refined in the tracking stage so that satellite ephemeris data can be decoded. Measurements of

pseudorange and pseudorange rate can also be obtained during tracking. A second-order DLL and

PLL is used in this software, as shown in Figure 3.

In conventional tracking loops, each acquired satellite is allocated to an individual tracking

channel. Each channel has two closed loops, one for code and one for carrier. All tracking channels

are independent of each other, i.e., no interaction between channels, and no information exchange

4

between signal tracking and navigation processors. The pseudorange range and rate measurements

are fed forward to the positioning module, e.g., EKF, to compute the navigation solution.

Figure 3. Conventional tracking architectures in GPSSDR_vt.

Vector Tracking
To start vector tracking, initialization parameters, such as ephemeris data, initial receiver PVT,

etc., should be provided. The pseudorange error and pseudo-range rate error extracted from the

code and carrier tracking loops are used as the measurements of the EKF. The estimated receiver

PVT is then used to predict the pseudorange, rate and the LOS vectors at the next epoch, closing

the loop finally. The block diagram of vector tracking is shown in Figure 4.

Each acquired satellite in the incoming intermediate frequency signal is allocated to one

tracking channel. In each channel, IF signals are first multiplied with the locally generated carrier

replica in both in-phase and quadrature arms. Correlation is then performed between the code

replicas and the received ones. In this software, three code replicas spacing of 0.5 chips are

generated. Afterwards, correlation results are integrated and dumped. The output of these

integrations is used as the input to the carrier/code loop discriminator to find the phase error of the

local carrier and code replicas. In each carrier loop, the carrier discriminator output is filtered and

fed back to the carrier numerical controlled oscillator (NCO), so as to modify the frequency of

local carrier replica. For the code tracking loop, code discriminator outputs of all channels are

5

forwarded to the navigation processor. In this software, an EKF is used. The output of the carrier

loop filter, i.e., Doppler shift frequency information, is also fed into the EKF. Note that in practice

the EKF update time is not necessary to be the same as the coherent integration time (typically 1

ms for GPS L1 signal). A pre-filter can be used to average the code discriminator outputs over

multiple integration time, e.g., 20 ms.

Figure 4. Tracking architecture of GPSSDR_vt.

Usage

GPSSDR_vt is very easy to use. This section presents the usage via an example. The raw IF

data was collected in an urban area in Hong Kong using the NSL Stereo front-end. The sampling

frequency and IF are 26 MHz and 6.5 MHz, respectively.

To begin with, it is necessary to know the folder structure of the software, as shown in Figure

5. This software is comprised of two separated files, which are the main program and initialization

function, respectively, and two folders containing baseband signal processing functions, geo-

related functions and plot functions, respectively. Baseband signal processing functions perform

signal acquisition, tracking, navigation data extraction, etc., while the geo-related functions do

coordinate transformation, atmospheric corrections, and so on. In each file, thereôs a comment that

clearly specifies the purpose of that function.

6

Figure 5. Folder structure.

Initialization parameters
To process the raw IF data, the first step is to initialize necessary parameters for acquisition,

tracking, positioning, etc. in the file named initParameters.m. Some important initialization

parameters are listed in Table 1:

Table 1. Initialization parameters.

Parameter Description

Raw data

parameters

file.filename Raw data file name

file.skip
Skip time in milliseconds, from when raw data is

processed

7

file.skiptimeVT
Skip time in milliseconds, from when vector

tracking begins

file.dataType

Raw data type:

1 - I

2 - I/Q

file.dataPrecision

Data size:

1 - óint8ô

2 - óint16ô

Signal

parameters

signal.IF Intermediate frequency

signal.Fs Sampling rate

signal.Fc Carrier frequency

signal.codeFreqBsis Code frequency

signal.Sample Numbers of samples in one code period

signal.codelength Code length

Acquisition

parameters

acq.prnList PRNs to be searched

acq.freqStep Frequency search step

acq.freqMin Minimum frequency to be searched

acq.freqNum Frequency bin numbers

acq.threshold Acquisition threshold

acq.L Numbers of code periods to find fine frequency

Tracking

parameters

track.CorrelatorSpacing
Correlator spacing between the Early and Late

code

track.msEph
Time needed to decode satellite ephemeris, in

milliseconds

track. msToProcessCT
Time to do positioning via LSE/EKF in

milliseconds

track. msToProcessVT
Time to do positioning in vector tracking mode in

milliseconds

track.pdi Prediction integration time

8

Navigation

parameters

solu.iniPos
Initial position, latitude (degree), longitude

(degree), height (meter)

solu.rate Navigation solution update rate in Herts

Common

parameters

cmn.vtEnable

Tracking mode:

0 - Conventional tracking

1 - Vector tracking

cmn.doy Day of year

It should be noted that the inonospheric delay correction parameters (ALPHA and BETA

vectors) should be set according to the RINEX file. Another important parameter is cmn.vtEnable

which indicates the tracking mode of the SDR, i.e., conventional tracking (cmn.vtEnable=0) and

vector tracking (cmn.vtEnable=1). When doing conventional tracking, navigation solutions are

estimated using the LSE or an EKF. In vector tracking, navigation solution estimation and signal

tracking are coupled together using an EKF. In this software, the EKF in CT and VT share the

same system state vector, process and measurement models.

Acquisition results
After the initialization, type ñSDR_mainò in the MATLAB command window and press

[Return]. This software will first acquire the visible satellites, outputting the satellite number,

signal-to-noise ratio, code phase and Doppler frequency in the command window, as shown in

Figure 6.

Figure 6. Acquisition results shown in MATLAB command window.

9

To visualize the acquisition result, one can dig into the acquisition function to see the

intermediate acquisition results. Figure 7 shows the 3D acquisition results of PRN 10. A peak

higher than the acquisition threshold claims a successful acquisition of that satellite. In this

software, the acquisition threshold is set as the SNR calculated. Users can set this value in the

script, initParameters.m. The acquisition result is saved in the current folder with the name of

Acquired + raw data file name + .mat. This software checks the existence of acquisition results of

this raw data file according to its name, so that users have no need to acquire signals repeatedly in

further development.

Figure 7. 3D acquisition results of PRN 10.

Tracking results
After the acquisition, do signal tracking and obtain satellite ephemeris. In the conventional

tracking, GPSSDR_vt uses a DLL and PLL, both with fixed bandwidths, to track the code and

carrier, respectively. The DLL employs a normalized noncoherent early-minus-late envelope

discriminator, while the second-order PLL uses a two-quadrant arctangent phase discriminator. A

progress bar will appear during the conventional tracking period, as shown in Figure 8. At least 30

seconds of data need to be tracked so as to decode five subframes. The conventional tracking result

is saved in the current folder with the name of TckRstct_forEph +raw data file name + .mat. The

decoded satellite ephemeris, named eph + raw data file name + .mat, is also saved, together with

the subframe information, named sbf + raw data file name + .mat, which contains the information

10

of the first navigation bit transition point and the beginning of subframe 1. This information is

useful in the subsequent vector tracking.

Figure 8. Progress bar during conventional tracking period.

Figure 9 shows the various tracking results of PRN 10. As seen in the top right panel in Figure

9, the navigation bit steam can be found in the in-phase output of the prompt channel. To obtain

the satellite ephemeris, we have to decode these navigation bits into the navigation message using

the script named naviDecode.m.

Figure 9. Tracking results of PRN 10.

11

Positioning results
If cmn.vtEnable is set as 0, navigation solutions are calculated using the EKF based on

conventional tracking results. On the contrary, cmn.vtEnable = 1 means navigation solutions are

estimated in the vector tracking mode. To this end, we need the conventional tracking and

positioning results and satellite ephemeris to start the vector tracking.

During the positioning process, information such as the time of week, positioning results in

East, North and Up directions (with respect to the initial a priori position given in the

initParameters.m file), and the user clock bias and drift solution will appear in the MATLAB

Command Window, as shown in Figure 10. It is helpful for readers to watch the results during the

positioning process.

Figure 10. Information in the MATLAB Workspace window during positioning process. The positioning

results are with respect to the initial a priori position given in the initParameters.m file.

Figure 11 shows the horizontal positioning results of both conventional tracking and vector

tracking, with respect to the initial a priori position given in the initParameters.m file.

12

Figure 11. Horizontal positioning results with respect to the initial a priori position given in the

initParameters.m file.

In addition, users can plot various results which can be found in the MATLAB Workspace

Window after the program execution, as shown in Figure 12.

Figure 12. Results in the Workspace window after the program execution.

References

