
COLLABORATIVE POSITIONING FOR IOT IN SMART CITIES
January 5 - June 13, 2026
Due to the forecasting 5G connectivity, all the road agents are expected to connect together. One potential is to making use of the sensors' measurement from the connected road agents to collaboratively positioning. We IPNL aim to develop a collaborative positioning platform and algorithm to integrate the information. We expect the collaborative positioning will play an important role in the futuristic IoT applications.
Researchers:
Mr Guohao ZHANG (PhD Student)
Mr Yang SONG (MSc Student)
JOURNAL PUBLICATIONS
Guohao Zhang, Weisong Wen, Li-Ta Hsu
GPS Solutions, 2019, 23(3): 83.
Guohao Zhang, Li-Ta Hsu
Guohao Zhang, Bing Xu, Hoi-Fung Ng, Li-Ta Hsu
Remote Sensing, 2021 (Submitted).
Short Brief: The proposed simulator employs a ray-tracing technique searching for all possible interferences in the urban area. Then, it categorizes them into direct, reflected, diffracted, and multipath signals to simulate the pseudorange, C/N0, and Doppler shift measurements correspondingly. The performance of the proposed simulator is validated through real experimental comparisons with different scenarios based on commercial-grade receivers.